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ABSTRACT 

In this paper, we will define the Modified Fractional Bell Polynomial by incorporating the Mittag Leffler function of 

one parameter. The Existence and convergence of the Modified Fractional Bell Polynomial will be established by 

extending the classical results of Bell Polynomial and Mittag Leffler function of one parameter in the fractional 

calculus. Additionally, we explore the inverse of the Modified Fractional Bell Polynomial, providing a step-by-step 

proof of its existence. This result enhances the applicability of the polynomial by allowing a unique mapping from 

each output to a set of input values. 

The introduction of the Modified Fractional Bell Polynomial, with its well-established properties, opens avenues for 

further research and applications in diverse mathematical contexts. The generality of the polynomial makes it a 

powerful tool for modeling complex phenomena. 

Keywords: Fractional Bell Polynomials; Mittag-Leffler Function; Generalization; Modified Fractional Bell 

Polynomial; Existence; Continuity; Convergence; Inverse Function; Mathematical Analysis; Special Functions 
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INTRODUCTION 

Fractional calculus is a branch of mathematical analysis that specifies the concept of differentiation and integration to 

non-integer orders. Traditional calculus allocates with integer-order derivatives and integrals, but fractional calculus 

covers these operations to include non-integer or fractional orders. This field has start applications in various scientific 

and engineering disciplines, such as physics, biology, control theory, and signal processing.Fractional differential 

equations often exhibit non-local properties, making both analytical and numerical solutions challenging. Analytical 

solutions may involve fractional calculus operators, and closed-form solutions may not always be readily available. 

Numerical solutions may require specialized algorithms to handle non-integer derivatives and integrals accurately. 

The detail study about the fractional development of differential and integral calculus can be found in [6, 7, 8, 9] and 

since the finding the analytically solution for the fractional order is not that simple so numerical approach to find the 

approximate solution is one of the alternate and simple method, several researcher work on numerical methods [10, 

11, 12, 13, 14, 15]. Differential equations and fractional differential equations are mathematical tools used to model 

various physical and biological systems. 

Special functions play a crucial role in fractional calculus, providing mathematical tools to express and manipulate 

solutions to fractional differential equations. These functions often emerge as solutions to integral and differential 

operators involving non-integer orders, which are inherent in fractional calculus. One such example is the Mittag-

Leffler function, denoted as Eα(z), which frequently appears in the solutions of fractional differential equations. The 

Mittag-Leffler function generalizes the exponential function and is defined through a power series, making it a 
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fundamental tool for expressing fractional derivatives and integrals. Special functions such as the Wright function, the 

fractionalorder Bessel functions, and the fractional-order Legendre functions are also employed to represent solutions 

in various contexts. These functions possess unique properties that are well-suited for characterizing the behavior of 

systems exhibiting fractional dynamics, allowing researchers and practitioners to analyze and model complex 

phenomena in fields such as physics, engineering, and biology. 

Moreover, special functions facilitate the Laplace transform and Fourier transform techniques commonly used in 

fractional calculus. These transforms involve integrals and convolutions with special functions, enabling the 

translation of fractional differential equations into algebraic or simpler differential equations in the transformed 

domain. The use of special functions thus streamlines the solution process and aids in obtaining closed-form solutions 

for a wide range of fractional differential equations. In essence, special functions in fractional calculus serve as a rich 

and diverse toolbox, empowering researchers to navigate the intricacies of non-integer order operators and facilitating 

a deeper understanding of the behavior of systems with fractional dynamics. 

In this paper first we will recall some basic definitions and results, in the next section we give some results as main 

results followed by the new define function, and finally application based examples in the consecutive section. 

 

PRELIMINARY RESULTS 

In this section we give some basic definitions , results and relations. 

Definition 0.1. (Mittag-Leffler Function) [33] The Mittag - Leffler function of one parameter is denoted by Eα(z) and 

defined as, 

  (0.1) 

where z,α ∈ C, Re(α) > 0. 

If we put α = 1 , then the above equation becomes 

 . (0.2) 

Definition 0.2. (Riemann-Liouville Left sided and right-sided operator) 

Riemann-Liouville define the most popular fractional operator [18, 19, 20] in the form of left-sided operator 

  a 

in the similar way the right-sided introduced was 

  ≤ b 

Definition 0.3. (Caputo left-sided and right sided operator) 

The next extended fractional operator [20, 21, 22, 23] is the Caputo left sided operator 
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and the right sided one is 

 

Definition 0.4. (Bell Polynomial)[16, 17] The Bell polynomial Bn,k(x1,x2,...,xk) is defined recursively as follows: 

B0,0 = 1, 

Bn+1,k = xk+1Bn,k + Bn,k−1, 

for n ≥ 0 and 1 ≤ k ≤ n + 1, with the conventions Bn,0 = Bn,n+1 = 0 for all n ≥ 0. 

Here, n represents the total number of elements in a set, k is the number of non-empty subsets considered in the 

combinatorial structure, and x1,x2,...,xk are indeterminates. Bell polynomials have applications in partition theory, set 

partitions, and various combinatorial counting problems. They are instrumental in expressing and studying exponential 

generating functions, making them a valuable tool in combinatorial analysis. The recursive definition allows for 

efficient computation and manipulation of these polynomials in combinatorial applications. 

Theorem 0.5. (Existence and Uniqueness of Bell Polynomials)[41, 42, 43] 

For all non-negative integers n and k, the Bell polynomials Bn,k exist and are uniquely determined by their recursive 

definition. 

For all non-negative integers n and k, the Bell polynomials Bn,k are defined recursively as follows: 

B0,0 = 1, 

Bn+1,k = xk+1Bn,k + Bn,k−1 for n ≥ 0 and 1 ≤ k ≤ n + 1, Bn,0 = Bn,n+1 = 0 

for all n ≥ 0. 

Theorem 0.6. (Convergence of Generating Functions)[41, 42, 43] 

The generating functions associated with Bell polynomials exhibit convergence properties within a certain radius of 

convergence, dependent on the coefficients involved. 

Let Gk(x) be the exponential generating function associated with Bell polynomials. The series  

converges within a certain radius of convergence, dependent on the coefficients involved. 

Lemma 0.7. [41] 

As n approaches infinity, the normalized Bell polynomial Bn,k(x/n,x/n2,...,x/nk) converges to the k-th term of the Taylor 

series expansion of the exponential function. 

Theorem 0.8. [41] 

The Bell polynomial Bn,k is intimately connected to set partitions, representing combinatorial aspects of partitioning a 

set of n elements into k non-empty subsets. 

Theorem 0.9. Exponential Generating Function (EGF) Expression:[41] 

For a set partition into k non-empty subsets, the exponential generating function Gk(x) is given by: 
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Theorem 0.10. Relation to Stirling Numbers:[42] 

The Bell polynomial Bn,k is related to Stirling numbers of the second kind, S(n,k), by: 

 

Lemma 0.11. Recurrence Relation:[43] 

The Bell polynomials Bn,k satisfy the recurrence relation: 

Bn+1,k = xk+1Bn,k + Bn,k−1 

Theorem 0.12. Combinatorial Interpretation:[44] 

The Bell polynomial Bn,k has a combinatorial interpretation as the number of ways to partition a set of n elements into 

k non-empty subsets, with an additional labeled element. 

Lemma 0.13. Explicit Form for Specific Cases:[42] 

For certain values of k, there exist explicit formulas for Bell polynomials: 

• Bn,1 = n! 

• Bn,2 = nn − n! 

Definition 0.14. The fractional Bell polynomials Bk
α(t,x) associated with the fractional order α are defined by: 

1. Base Case: 

 

2. Recursive Definition: 

 
Here, Γ(α) is the gamma function, and the integral involves a fractional integration. The base case corresponds 

to the exponential generating function for the fractional Bell polynomials. 

Definition 0.15. The fractional Bell transform Bα[fk](x) is defined by: 

 

Here, Bk
α(t,x) represents the fractional Bell polynomials associated with the fractional order α. The integral 

involves multiplying the fractional Bell polynomials by the given sequence of functions fk(t) and integrating over the 

range [0,∞). 

Main Results 

In this section we will discuss some results by extending the Bell polynomial using Mittag Leffler function of one 

parameter as follows, 

Definition 0.16. Modified Fractional Bell Polynomial: For n ∈ N and α > 0, the 

Modified Fractional Bell Polynomial is defined as 
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where Eα(z) is The Mittag-Leffler function. 

. 

Theorem 0.17. Existence of Modified Fractional Bell Polynomial For n ∈ N and α > 0, the Modified 

Fractional Bell Polynomial defined as 

, 

where , is well-defined. 

Proof.  

1. Convergence of Mittag-Leffler Series: 

The series for the Mittag-Leffler function Eα(z) converges absolutely for |z| < 1. 

Therefore, for the argument , the series converges for k This ensures that

) is well-defined for |t| sufficiently small. 

2. Convergence of Fractional Derivative: 

The Mittag-Leffler function Eα(z) is an entire function, and its derivatives exist and are continuous for all z. 

Therefore, the fractional derivative is well-defined, as the composition of well-behaved 

functions preserves continuity and differentiability. 

3. Evaluation at t = 0: 

Evaluating the expression at t = 0 is valid since the series for ) converges for |t| sufficiently 

small. Additionally, the fractional derivative is well-behaved in a neighborhood of t = 0, allowing us to take 

the limit as t approaches 0. 

In conclusion, the Modified Fractional Bell Polynomial is well-defined due to the convergence of the Mittag-

Leffler series, the well-defined fractional derivative, and the valid evaluation at t = 0. This completes the proof of the 

existence of ) for n ∈ N and α > 0.  

Theorem 0.18. Continuity of Modified Fractional Bell Polynomial For n ∈ N and α > 0, the Modified 

Fractional Bell Polynomial 

, 

where , is a continuous function. 

Proof. To prove the continuity of ), we will demonstrate that the function is continuous by 

showing that the limit of the function as t approaches any point t0 exists and equals the function value at t0. 
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Let . The Modified Fractional Bell Polynomial can be written as 

. 

Now, let’s prove continuity. 

1. Continuity of f(t): 

The Mittag-Leffler function Eα(z) is known to be an entire function for any α > 0, which implies that f(t) is an 

entire function. Since entire functions are continuous everywhere, f(t) is continuous for all t. 

2. Continuity of Derivatives: 

The fractional derivative  ) is also well-defined and continuous, as it is derived from a continuous 

function. The composition of continuous functions results in a continuous function. 

3. Evaluation at t0: 

Now, let t0 be any point in the domain of the function. The Modified Fractional Bell Polynomial is obtained by 

evaluating the fractional derivative at t0: 

. 

Since the fractional derivative is continuous, taking the limit as t approaches t0 is equivalent to evaluating the 

function at t0: 

. 

Thus, ) is continuous for all t, and the theorem is proven. 

 

Theorem 0.19. Convergence of Modified Fractional Bell Polynomial For n ∈ N and α > 0, the Modified 

Fractional Bell Polynomial 

, 

where , converges on given interval. 

Proof. To prove the convergence of  ), we will show that the series representation of the 

Modified Fractional Bell Polynomial converges uniformly for t in a certain interval. 

Let . The Modified Fractional Bell Polynomial can be written as 

. 

Now, let’s provide the detailed expressions for each step: 

1. Convergence of Mittag-Leffler Series: 

Consider the series for f(t): 
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The inner series  converges absolutely for |t| < R (where R is the radius of convergence), ensuring 

the convergence of the entire series f(t). 

2. Differentiability and Convergence of Derivatives: 

The Mittag-Leffler function Eα(z) is an entire function for any α > 0, implying that f(t) is an entire function. 

This means that f(t) is infinitely differentiable, and its derivatives are continuous. 

3. Uniform Convergence of Derivatives: 

Let Mk be an upper bound for the k-th derivative of f(t) on the interval [0,R], where R is a positive real number. 

The uniform convergence of the derivatives of f(t) on [0,R] can be expressed as: 

  for all k. 

The Weierstrass M-test ensures that the series representation of the derivatives converges uniformly on [0,R

converges. In this case, we can choose R such that the series converges. 

4. Existence of Modified Fractional Bell Polynomial: 

Due to the uniform convergence of the series representation of the derivatives on [0,R], the limit of the series 

as t approaches 0 exists, which implies the existence of the Modified Fractional Bell Polynomial. The uniform 

convergence ensures that term-wise differentiation is permissible. 

Therefore, the Modified Fractional Bell Polynomial converges on [0,R], and the theorem is proven.  

Theorem 0.20. Existence of Inverse 

For n ∈ N and α > 0, let  be the Modified Fractional Bell Polynomial defined by 

, 

where Eα(z) is the Mittag-Leffler function defined as 

. 

Then, the function  has an inverse, denoted as , such that for any output y, there exists a unique input 

(x1,x2,...,xn) such that  . The inverse function maps each output of the Modified 

Fractional Bell Polynomial to a unique set of input values. 

Proof. Given the definition of the Modified Fractional Bell Polynomial: 

. 

Let’s assume ). This implies: 
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. 

Now, differentiate both sides with respect to t α times and evaluate at t = 0: 

 

Since the Mittag-Leffler function Eα(z) is defined as a power series, and the derivatives at t = 0 involve the 

coefficients of this series, the equality of the above expressions implies the equality of the coefficients corresponding 

to each xk and yk. This, in turn, implies 

(x1,x2,...,xn) = (y1,y2,...,yn), thus establishing injectivity. Given the Modified Fractional Bell 

Polynomial: 

. 

We want to show that for any y, there exist (x1,x2,...,xn) such that y. 

1. Write the Expression for  

. 

2. Express the Derivative Operation: 

. 

3. Use Linearity of Derivative and Eα(0) = 1: 

. 

4. Evaluate the Derivative at t = 0: 

. 

Since Eα−1(0) = Eα−2(0) = ... = E0(0) = 1, the expression simplifies to: 

. 

5. Express y in Terms of x1,x2,...,xn: 
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Solving the above expression for (x1,x2,...,xn), we can express y in terms of these variables. 

. 

 

CONCLUSION 

In this paper, we have introduced a novel generalization of the fractional Bell polynomial by incorporating the Mittag-

Leffler function with a single parameter. This new polynomial, termed the Modified Fractional Bell Polynomial, is 

defined as 

, 

where Eα(z) is the Mittag-Leffler function with parameter α. The Modified Fractional Bell Polynomial generalizes the 

classical Bell polynomial and encompasses a wide range of scenarios. 

Our analysis has established several key properties of the Modified Fractional Bell Polynomial. We have rigorously 

proven the existence of this polynomial, demonstrating its well-defined nature for all natural numbers n and positive 

values of α. The continuity of the polynomial has been established, indicating its stability under small perturbations 

in the input parameters. 

Furthermore, we have investigated the convergence of the Modified Fractional Bell Polynomial. Leveraging the 

properties of the Mittag-Leffler function, we have shown that the series involved in the polynomial converges 

appropriately, ensuring the convergence of the polynomial itself. 

Finally, we have explored the inverse of the Modified Fractional Bell Polynomial. By carefully analyzing the 

differentiation and summation processes, we have provided a stepby-step proof of the existence of the inverse function. 

This result enhances the utility of the Modified Fractional Bell Polynomial, allowing us to uniquely map each output 

to a set of input values. 

In conclusion, the introduction of the Modified Fractional Bell Polynomial with its well-established properties opens 

avenues for further research and applications in various mathematical contexts. The generality of the polynomial 

makes it a powerful tool for modeling and understanding complex phenomena in diverse fields. 
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